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Abstract

This paper considers an optimal regulator problem which is different

from the conventional linear quadratic cost problem but leads to a stable

linear feedback control. The problem considers a double integral quadratic

cost function and an integral constraint on state tralectories. The optimal

open-loop control is transformed to a closed-loop control and subsequently

a modified control is obtained based on a receding horizon notion. This

modified control law is shown to be asymptotically stable and to result in

a new method for stabilizing linear time-vai~’ying systems, in addition to the

methods of [1] and [2], as well as providing an easy means to stabilize time-

invarient systems comparable to the method of [3]. Moreover, the gain matrix

for the modified control is obtained from a Riccati-type equation over a

finite time interval , and a large class of nonlinearities can be allowed in

the closed-loop without destroying its stability.

[~çç~ssIoN ~~~~~~~~~~~~~~~~

[err~sDUC Buff ~c;~~’ E~
N C



: i ~~

I. Introduction

Consider a linear time-varying system

~(t )  A(t)x(t) + B(t)u(t) (1.1)

v(t) C(t)x(t) (1.2)

where x(t0
) x

0, and (~
(t), B(t), C(t)) are nxn , nxm ard pxn piecewise contin-

ous matrices. There have been many studies in obtainins~ stable linear feed-

back controls with some optimal basis. The most familiar of these is ob-

tained from the steady state optimal control for the quadratic cost

J( u ) J ~ [y ’(t)Q(t)v(t) + u’(t)R(t)u(t)]dt (1.3)
to

with a free terminal condition, where Q(t) and R( t ) are p iecewise continuous

weighting matrices with 0(t) ~ 0 and R(t) ~ 0 Ii]. Recently in [2] we suggested

another stable linear feedback control which is based on a receding horizon

notion applied to the above quadratic cost problem with a fixed terminal constraint

x(tf) 0. (l.L~)

This is ecuivalent to the fol1owin~ integral constraint on the control

~~ ,t)fl(t)u(t)dt = — x(t ), ( v . 5 )
i t 0 0

where ~ (t ,t) is the state transition matrix for (1.1). We have sho~~ in [21

that this control law , which is obtained from the above problem by a receding

horizon notion (t
f 

t + T), stabilizes the linear system (1.1) under certain

conditions , and that the g ai n matrix is obtained from a Piccati differentlil

equation (1cfin~d over a finite t ime intf’rva l of lrl-it rdri lv short duraticn . such

~ receding horizon notion has also Leen discussed Lv Thomas for time invariint

systems and with ~ J [lOJ.

_____________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In addition to stability , the well-known free terminal steady state optimal

control of [l ,t4) possesses the important property that it tolerates certain

nonlinearities in the feedback loop without destroying stability . Specifically ,

the resulting system has been shown in [5 ,9] to possess infinite gain margin

and a 600 oh~se margin under certain conditions which include Q(t) ~ ~I for

some ~ > 0. The modified receding horizon control in [2] can be shown to possess 4
the same property. These kinds of relationships between system coefficients

and the tolerance of nonhinearities in the feedback loop have been extensively

studied , particularly the absolute stability problem for tine invariant systems

[7,8], commencing with Lur~ .

The purpose of this paper is to introduce an optimal regulator nroblemn

which is different from the conventional linear quadratic cost problem but whose

modification leads to another stable linear feedback control with tolerance

for a large class of nonhinearities in the feedback ioop. In Section II a double

integral control energy problem with a compatible constraint is formulated and

its optimal open-loon control solution is transformed to a closed-loop linear

state feedback control. In Section III it is shown that the modified control

law obtained by the receding horizon notion is a uniformly asvmntoticallv stable

control which allows for a large class of nonlincarities in the feedback loop .

The correspondinc~ results for linear time invariant systems are stated in Section

Iv .

II. A Double Integral i~inimum Control Fnergy !‘rohlem

For the given system ( l . l ) - ( l . 2) ,  we con side r a double integral control energy

funct ion

tt f IT
J ( u )  = J I u ‘ ( )R( )u(s )ds~ i ( 

~~~. I)
t .

~tC, 0

t 
—U---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 4
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and a constraint which is similar to ( 1.5)  hut is compat ible with the cost

function (2 .1):

tt
f

(•T

I I ~(t ,s)B(s)u(s)dsdt —x(t ). (2.2)
i t i t 

0 0

0 0

From the variation of constants formula , the constraint (2.2) on the control

is equivalent to the following integral constraint on the state :

x(t
0
) + ~(t ,s)x ( s) ds  (t

f -t0
)x(t ). (2.3)

The solution to the above problem is given as follows .

Theorem 2.1. The opt imal control law for the system (1.1) which minimizes the f.

cost function (2 .1)  sublect to the constraint ( 2 . 2 )  (or equivalent ‘ (2.3)) is

given by

u ( t )  = — R 1(t)B’(t)~ ’(t ,t)~~
1(t ,t~ )x(t ) (2.4)

where
t t

P(t ,tf
) f~ J~ 

$ (t 0 ,s ) B ( s ) R ~~ ( s ) B ’ ( s ) ~~’( t 0 ,s) d s d r .  (2.5)

Proof: The proof is straightforward by introducing a Lagrange nultimlier A for

the constraint ( 2 . 2 ) .  The necessary condition for min imiz ing  the cost function

J f  
~~~ 

(ku ’ (s)R(s)u(s) + X’~ (t ,s)B(s)u(s))dsdt

is that A = 0, i.e.,

+ fl’(s)~~’(t ,s) A 0.

L 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .
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Thus the optimal control is given by u ( s)  - P ( s)~~’( s) ~~’(t ,s ) A . Combining

this control and the constraint (2.2) yields A = P~~(t ,t )x(t ), which comoletes- o f  o

the proof.

The double integral matrix 15(t ~tf
) can be expressed as

~(t0~tf
) = P(t

01i )dr (2.6)

where the controllability matrix P(t ,r) is obtained from
- 0

~~~~~ 

- 
~~~ P(s,i) = -A(s)P(s,r) - P(s,r)A’ (s) + B(s)R~~(s)fl’(s) (2.7)

4- ~- with the boundary condition P (r ,T) = 0. By combining (2.1) and (2.4), the ontimal

cost is given by

J(u) = x ’( t )
~~

1(t ,t )x(t ).o o f  o

Since the controls in (2.1) are more heavily weighted around the initial time

than the terminal time , it is believed that the control mahnitudc of (2 . 4) tends

-~ to be smaller than that of a conventinnal optimal control solution near the in-

- itial time. It is noted that the ontimal onen-loop control (2.4) does not ruar-

antee the terminal  constraint x(tf) = 0 because the constraint (2.3) does not

necessarily imply ( 1. 4 ) .

A closed-loon control can be defined from the open-loon control (2.4)  by

replac~nr to with t as follows :

u (t) -R~~(t)B’(t)P
1(t t )x(t) (2.8)

- 
- whe re ~ (t ,t ç) is c~iven by e i ther  ( 2 . 5 )  or ( 1 . 6)  w i t h  t renlac~~t by t. It i~

n oted th ~~~t tLe closed—loon contr.~l (2. ~~) tries ~~~~ ;I ti sf ’f t Lc ~ ~~~~~~ constr.~int

;* I 
_ _ _ _

__
_ _ _ _ _ _ _ _ _ _ _ _  
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L tf
~(t) + J •(t ,s)x(s)ds = (t

f
— t ) X (t )  (2.9)

t

at each instant “t”. From this constraint it is readily seen that the closed-loop

control (2.8) guarantees the terminal constraint x(tf
) 0, in contrast with

the open-loop control. (2.L~), as can be seen by letting t approach tf 
in (2.9).

It is the control (2.8) that will be modified by the receding horizon notion

in order to obtain a stable linear feedback control which satisfies the properties

mentioned in the Abstract .

III, A Modified Regulator for Time-Vary ing Systems

In addition to the infinite—time optimal control of [l,~) and the modified

receding horizon control of [2], we introduce in this section another stable

linear feedback control law from (2.8) which requires the integration of a

Riccat i differential equation over a finite time interval and allows a large

class of nonlinearities in the feedback loop without destroying stability.

The following definitions are necessary for further analyses.

Definition: The pair {A(t),B(t)} is uniformly completely controllable if there

exists a positive constant > 0 such that the following two conditions are

satisfied :

(a) a
1 
I ~ W(t ,t+6~

) 
~~2 

~~ for all t (3.1)

(b) ~I~(t ,t ) II ~ a3(It—t l ) , for all t ,r (3.2)

wbo~. th~ co r~lla!~!lit’~ “atrix ~!(t ,t
1

) i~ ~e~~ne~’ 1~’v

W (t 0,t1) = •(t ,t )B( t )B ’( t )~ ’(t
0
,t)dt (3.3)

T ~~~~~ 
- — 

~~~~~~~~~~~~~~~~~ I
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and ~~t,t )  is the state transition matrix for ( 1.1) .  Inequalities (3.1) and

( 3 . 2 )  are presumed to held for some nosi tive constants a 1 and a2 ,  and for an

aopropriate funct ion 1
3(.) which maps R into R and is bounded on bounded in- - F.

tervals.

Uniform com~1ete observability of the pair (A(t),C(t)} is defined similarly

with the ob servaHilty matr ix

It
‘~(t , t 1

) ~~~ 
~‘(t ,t )C’(t)C(t)~ (t ,t )dt (3.4)

0

corresponding to an a~~ ro~ r iate ó > 0. Let ~ = max 
c~~ o

L ‘Tow consider a

matrix Riccati equation

- }- P(s ,t )  = - A ( s ) P ( s ,T )  - P(s ,t ) A 1( s )  -P(s ,t ) C ’( s ) Q ( s ) C ( s ) P ( s ,~~)

+ R ( s ) R ~~ ( s ) B ’ ( s) (3.5) ‘

with the boundary condition P(t ,r) 0. The Riccati equation (3.5) comes from

the fixed terminal quadratic cost probl em ( i . i) - ( 1.4 ) .  Note that Ecuation (2 . 7)

can he obtained from (3.5) by taking Q(s) 0. The fol lowing results are necessary

for the main theorem .

Lemma 3.1. Assume that cz~ I ~ R ( t )  
~ ct~ I where cz .~ and are positive constants.

(a )  Assume that 0 ~ ~~ ( t )  ~ I for some ~ 0. If the pair {A(t), ~~( t ) )  is

uniformly completely controllable and C (t) is hounded , i.e., H C ( t ) I I  ~ it for

some a7 > 0 , then for a f ixed T s a t i s fy ing  3 < T < ~ there exist positive

constants a9 and such that  I~(t , t+T)  obt a ined  From (‘.6) and (3.5) satis~ ies

i t ~ P(t ,t+T) ~ I for all t. (3.E~)

( 5 )  -~:;sume that ~ ‘( t ) 
~ I for some a10 ~ 0. if the pairs ( A ( t ) , B(t)}

- - . - 
- __________
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and {A(t),C(t)} are uniformly controllable and observable respectively , then for

a fixed T satisfy ing 6 < T < the relation (3.6) holds.

Proof: (a). It is shown in [2] that there exist positive constants and a
12

such that

a11 I ~ P(t~ t+T) ~ a~~ I for all t. (3.7)

The upper bound of (3.6) follows from the fact that

1t+T 1t+T

) P(t,i)dt 
~ 

j P(t ,t+T) di ~ TP(t ,t+ T) ~ T a12t t

since P(t ,t1) ~ P(t,t~ ) for t ~ ~ t
2
. The lower bound follows from

1t÷T cttó p t÷T

J P(t,t) di = ) C P(t,~~)dt + )
t t+6t c

t+â t+T

~ 

~ P(t ,t )dt + P(t,t+6 )dt ~ (T -

(b) The dual form of inequality (3.7) can be found in [1] and [6]. Inequality

(3.6) follows from the above argument . This completes the proof.

By sliding the terminal time of (2.8), i.e. invoking the receding horizon

notion , we now introduce a modified control law :

u(t) = —R~~(t)B~(t)P~~(t ,t÷T)x(t), T > 6 (3.8)

- A ft+T
where P(t,t+T) P(t , r ) d r  and P(t,r )  is obtained from (2.7) by integrating

backward from s = t to s = t .  It is easily seen that (3.8) is the optimal control

for the ~vstem (1.1) which minimizes the movin g cost func t i on

1t+T ci

J J u’(~~)R (s)u (s)dsdt 
(3.j)

t t

—~~~~~~ - ----~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —,—-~~ —.-— - - - -
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with the moving boundary condition on the control

t+T iI I ~(t ,s)3 ( s)u ( s) dsd t  = - x (t), (3.10)
t t

or equivalently with the moving boundary condition on the state

çt+T
x(t) + I ~(t ,s)x (s)ds  = Tx(t). (3.11)

Important properties of the control law (3.8) which will now be demonstrated

are (i) the closed-loon system is asymptotically stable , (ii) the gain matrix

in (3.8) is obtained from integrating a Riccati equation over a finite time

interval , and (i ii)  the closed-loop system (see Fig. 1) tolerates a large class

of nonlinearities in the feedback loop corresponding to a chosen small value

of T. In the following theorem the matrix ~(t ,t÷T) in (3.8) is assumed to be

obtained from (3 .5)  instead of ( 2 . 7 )  in order to facilitate a weight ing of the

state through 0(t).

Theorem 3.1. (a)  Assume that a4 I ~ R ( t )  ~ a~ I arid 0 ~ Q( t ) ~ a6 I. If the

pair {A ( t ) ,  B ( t ) }  is un iformly coim letely controllable and C( t )  is bounded , the n

for a fixed T satisfying < T ~ 2 , the system (1.1) with the control law (3.8)

is unif~rm1y asymptotically stable where f~(t ,ti-T) is obtained from (3.5). Further-

more , the system (1.1) is uniformly asvmritoticallv stable with either of the

following control laws :

(i) u (t) = - ~p( t)R (t)B’ (t)i ~~~(t ,t+T)x (t),T > 6 (3.12)

where T and the mxm time-varying matrix ~j,(t) are such that 
- 

- 
-

+ r~( t ) ~’( t )  ~ TR (t), (3.fl)

_ _ _ _ _  

_ _I L 4~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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~1i
or (i i)  u ( t )  = ~ (-R (t)B’ (t)~~

1(t,t+T)x(t)), T > (3.14)

where ~~~(
-
~~) maps~~~ into~~~ such that

w ’? (t ) ~~( w )  ~ ~~w ’ R ( t ) w , V w c~~~~. (3. 15)

(b) Assume that a4 I ~ 
R( t ) 

~.a 5 I and a10 I ~ 
Q( t ) ~ a6 I. If the pairs

{ A (t ) , B ( t ) }  and {A(t), C(t)} are uniformly completely controllable and obser—

vable respectively , then the above results in (a) hold with 6
c 
replaced by 6.

Proof: Take as a Lyapunov function for the closed-loop system (1.1)-(3.8) with

(3.5),

V(x ,t) = x t~~
1(t ,t+T)x. (3.16 )

From Lemma 3.1(a) the function (3.16) has uniform lower and upper hounds. The

derivative of (3.16) along the solution is given by

V (x ,t) = x ’P 1
(t ,t +T )x + x ’P~~ (t ,t+T)x + x ’ ~~ P~~(t,t+T)x

x ’ {(A (t)-B(t)~ (t)R~~(t)B’ (t)i~
1(t ,ti-T)) ‘P

1(t ,t+T)

+ P ( t ,t+T)(A (t)-B(t)p (t)R~~(t)B’(t)P~~(t ,t+T))

- ~~~(t ,t÷ T)[~~~P(t,t÷ T )]~~~(t ,t+T)}x. (3.17)

By integrating both sides of (3.5) we obtain

t+T ~t+T r t+TI - P(t,r)di = - A ( t )  P (t ,t ) di-  I ~- ( t ,i)di
i t ~t i t i t

tt+T 1t+T
— J P(t,t)C’(t)Q(t)C(t)P (t ,t)dt + J B(t)P 1(t)B’(t)-~r

t t

- 1t÷T
— ?(t)?(t ,t÷T) — ë ( t , t + r ) A ’ ( t ) — J P (t , r ) C ’ ( t ) - ~ ( t ) C ( t ) P ( t ,i ) ct

t

+ 7 B(t)R~~(t)B’(t), (3.13) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - ~~~ - _: - - - - ~~~~~~~~~
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from which follows that

- ft+T
P~~(t ,t+T) J - }

~
- F ( t ,r ) d t  ~~~~t ,t÷T) -P~~(t ,t+T)A (t) - A ’ ( t ) P 1(t ,t÷T )

t

+ T P 1(t ,t + T ) B ( t ) R ~~~( t ) B ’ ( t ) P ~~~(t ,t+T )

1 tt+T
-

~~~~~ (t ,t +T ) J P (t ,i) C ’( t ) Q ( t ) C ( t ) P ( t ,t ) dt  ~~~ (t ,t + T) .  (3.19 )
t

Also we have that

- 
t+T t+T

P(t,ttT) 

~~~~~

- J P (t ,r) d t  = P(t ,t +T) -P (t ,t )  + I~ ~~~~
- ?(t,r)dT. (3.20)

Combining (3.17), (3.19) and (3.20) yields

V(x ,t) — x ’P (t ,t÷T ) (P ( t ,t+T) + f ~~
-
~~
- P( t ,t ) dt — ~~

-
~~
-

J
t -I t

~t+T 1
+ J P(t ,i ) C ’ ( t ) Q ( t ) C ( t )P (t ,r ) dt  + B(t)R ( t )[ i~ ’ (t ) R ( t )

t

+ R ( t ) ~~( t )  - T R ( t ) ] R ’( t ) B ’ ( t ) } F 1(t ,t + T )x

- x ’P (t ,t + T ) P (t ,t+T ) P~~ (t ,t + T ) x

provided condition (3.13 ) holds . From ( 3 . 6 )  and ( 3 . 7 )  it follows that
. —2 2 . . . . .V (x ,t )  ~ -a11 a0 ~~ , which implies that  the closed-loop system is uniformly

asymptotically stable . The proof concerning the control (3.l4)-(3.l5) is exactly

the same as above . W i t h  ~~t )  = I , or ~ ( w )  = w , it is clear that 7 must ~e no

Ireater than 2.  The proof of part ( h )  also exactly the same i~~ rjrt (a). Th i s

completes the proof. 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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It is noted that nonlinearities satisfying ‘~‘(t) ~ are allowed in the

feedback loop for a single input system and that for a given nonlinear function

it is possible to find a suitable value of T in order to obtain a stable system . L
It is also noted that the Lyapunov function (3.16) corresponds to the original

system (l.1)-(3.8), while that used for the proof of the control in [2] was de-

fined for the adjoint system in order to include the special case of Q(t) = 0.

It is interesting to investigate some relationships between the modified control

law (3.8) and the open loop control law (2.4) from which the control law (3.8)

is obta~.ned. ~Ie show in Theorem 3.2 that the double (resp . single ) integral

quadratic cost for the system (1.1) with the control (3.8) is not larger than

the double integral quadratic cost of the open loop control (2 . 4) with

tf 
- t0 

+ T if t
1 

- t0 
+ T ~ 2 (resp . T ~ 1).

Theorem 3.2 The single and double integral quadratic costs for the system (1.1)

with the control (3.8) satisfy the following bounds:

u’(t)R(t)u(t) dt ~ x’P~~(t ,t sT)x if T ~ 1, (3.21)

1 ~ I u’(t)R(t)u(t)dtdT ~ x ’P~~(t ,t +T)x if t - t + T ~ 2. ( 3 . 2 2 )
1t 1-t 0 0 0  0 1 0

0 0

Proof : Let F (t )  = A (t )  - B( t )R~~(t)B’(t)P~~(t ,t+T) and let 4~ (t~t )  be the state

transition matrix for F(t). The s~rIg1e integral quadratic cost with  the feed-

back control (3.8) is given by x ’~ (t ,t1
)x where h (t

0,t1
) is the solution of

the matrix Riccati equation

— 
~~~~~

. ::(t,t1
) = F’(t)iU t,t1

) + N ( t ,t 1) F ( t )

I 
+ (t ,t+T)B (t)r (t)B’ (t)~~~(t ,t+T ) (3.23)

-

~

-

~

S

~

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - U
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with the boundary condition N (t 1,t1
) 0. From (3 .20)  and (3.18) we have

— f ~‘~~(t ,t÷T) = F’(t)P 1(t ,t+T) + ~~~(t,t+T)F(t) +

(2_T) (t ,t+T)B(t)R (t)Bv(t) 1(t ,t+T) + ~~~ (t ,t+T ) [P (t ,t+T ) +

1t+T lP(t ,-r ) C ’ ( t ) Q ( t ) C ( t ) P ( t ,t)d -r ] P (t ,t + T ) .  (3 .24)
J t -1

Let E( t ) = N(t,t1
) - 

~~~(t,t÷T). Then from (3.23) and (3.24) we have

- 
~(t) = F’(t)E(t) + E(t)F(t) - (1-T)~~~ (t ,t+T)B(t)R~~ (t )B ’( t )P~~(t,t+T)

1t÷T -

— ~~~~t,t÷T) [P (t ,t÷T) + I P( t,r)c’(t)Q(t)C(t)P(t,t)dt]P~~(t,t+T)

(3 .25 )  
i ~

with the boundary condition E( t
1
) = -~~~(t1,

t
1
+T). From (3.25) it follows that

N (t ,t1
) - 

~~~~~~~~(t ,t0+T) = E(t 0
) 
~ — (t

1~
t0)~~

’(t
1~t1

+T)4~ (t1,t )  (3.26)

provided T ~ 1. In a similar way it can be shown that the double integral cost

with the control (3.8) is given by x~~(t0,t1
)x
0 
where ii(t

01t1
) is the solution

of the matrix Riccati equation

— ~~-N (t,t1
) = F ’ ( t )~~(t , t

0
) + ~i(t ,t0

)F( t )

+ (t
1 

- t) 1(t ,t+T)B(t)R (t)B’(t)~~~(t ,t+T)

with the boundary condi tion ~i(t1,t1) = 0. Let ~( t )  = ~(t,t1
)—f~~ (t,t+T).

Then we have

-~ (t) ~(t)~ (t)+~(t)F(t)-(t-t1 
+ 2-T)F (t ,t+ T ) B ( t ) ~ ( t ) B ’ ( t ) ~~

1(t ,t+T ) - : 1 ( t ) ,

I _ _ _  -~~~~~~ ~~~~~~~~~~~~~~~~~~~~ -- --- ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where Z(t) is the nonnegative definite last term of (3.25). Thus we have a similar

inequality as (3.26 ) provided T + t1 
- to ~ 2. This completes the proof.

The relation (3.21) shows that the infinite time control energy is bounded

if the system is uniformly completely controllable . The results in this section

have simpler forms in the case of time invariant systems as shown in the next

section .

IV. Linear Time Invariant Systems

In this section consider a linear time invariant system

c ( t ) Ax( t ) + Bu( t ) ,  x(t ) = x
0 

(4.1)

y( t ) = Cx(t )  (4 .2)

where {A ,B ,C} are constant matrices. If the pair {A ,B} is completely controllable ,

the minimization of the double integral quadratic control energy (2.1) with a

constant matrix R subject to the constraint (2.2) or (2.3) leads to the optimal

control law

u(t) = - R 1B’P 1(tf
-t)X (t) (4.3)

where
~t (i A A’P(t) = I I e ~BR~~B ’ e Sdsdt (4.~4)J o J o

The result analogous to Theorem 3.1 for the time invariant case is contained in

the following .

Theorem 4.1 If the pair {A ,B} is comp lete ly controllab le , then the system (4.1)

is uniformly asymptotically stable with the feedback cont~~ 1. law

u(t) = —R 1B ’~~
1(T)x ( t ) ( L~.5) *

where 0 ~ ~ 2 m d  P(T) is obtained from

—
~~~~~~~~~~ 

~~~~
-

~~~
- - 

- ~~ - -. ~~~~~~~~~~~~~~~~~~
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çT

= J P(t)dt  (4 .5)
0

and P(t) is given by

~~~~~ - P (t )  -AP(t)  - P( t )A’ - P( t)C ’QCP(t) + BR 1B ’

(t~.7)

P (0) 0

for any Q ~ 0 and R > 0. Furthermore, the system (1.1) is uniformly asymptoti-

cally stable with the control law:

u(t )  = — ~,(t)R B’P~~ (T)x ( t) , T > 0 (4.8)

where T and tp( t )  satisfy the relation (3.13) with a constant matrix R, or with

the control law 
1 1

= ~(—R B’P (T)x(t)), T > 0 (4 9)

where T and ~( )  satisfy the relation (3.15).

Prom the special structure of a time invariant system, the condition of

Theorem 4.1 can be weakened as follows.

Proposition 4.1 If the pair {A,B} is stabilizable, then the system (1.1) is

uniformly asymptotically stable with the feedback control

u(t )  — R~~B ’P 1 (T)x( t ) ,  0 < T ~ 2 (4.10)

where P (T) is the generalized inverse of the matrix P(T).

‘Ihe proof of the above result is similar to the one in [2] and is thus

omitted here. It is noted that for the special case of Q 0, P(t) in (4.3)

and (4.5) can be obtained very easily by a single integration as shown below.

Integrating both sides of (4.7) with Q 0 we obtain

P( t ) = — AP ( t ) — 
~(t)A’ + tBR~~B ’ . (4.11)

From (4.6) it follows that P(t) = ~~~~~
. 

~(t) so that P(t) satisfies

~~
-

~~
- P(t) = — AP (t) — r(t)A’ + tDR 1 r~’ (4.12)

~(0) 0.

I’
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The control (4.5) with i’(T) obtained from (4.12) is as easy to obtain as the one

in [3], but (4.5) has been shown here to allow a larger class of nonlinearities

in the feedback loop. 
.

Some characteristics of the control (4.5) in the frecuency domain will now

be considered. For notational convenience we define

A -l --1K = P (T ) ,  L = -R B’P (T),

e-id (4.13)

~~A ..l ~T — -1 -l
Q = P (T) J P(t)C’QCP(t)dt P (T) + ~

‘ ( T )p ( T )P ~(T ) .
0

Then (4.7) is equivalent to the following matrix equation :

A’I( + KA - T KBR 1B’K + Q = 0. (4.14)

By a slight modification of the methods introduced in [5], (4.14) can be shown to

yield the following relation in the frequency domain :

I - R~ L(-sI - A )~~BR~~~ E# I - ~~ L( sI - A)
_l

BR
~~I

= 
2
1 + 4 R~~4B’ (—sI .A’)~~ ~(sI - AY1BR~~~. (4.15)

T

Relation (4.15) also implies

[4 I - R~L(-jwI - A) BR~~ 

‘ 

~4 I - R~ L (j ~~I - A)~~BR~~~

~ 
I I . (4.16)

For simplicity we consider a single input system where R can be taken as unity ,

B = b is a column vector and L = L is a row vector. Relation (4.16) can be

expressed in-this case as follows:

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
- - 

— 11
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4 —  L (j wl  — AY 1b 
~ 4 . (4.17)

Inequality (4.17) implies that the Nyquist plot of the closed-loop transfer

function - £(jwl - A) 1
b lies outside a circle centered at - ~~~

. + jo with radius

as shown in Fig. 2. The key observation , as noted in [5], is that the number

of encirciements of any point inside this circle is the same. Theorem 4.1 in

conjunction with inequality (4.17) shows that the number of encirclements of 
*

points lying on the real axis inside this circle is the same as the number

of poles of the transfer function in the closed righthand plane. From these

properties and Fig. 2 it is clear that the system employing the control law

(4.5) has an infinite gain margin and the following phase margin :

= tan -l . (4.18)

Thus , 0 = 0 for T 2, 0 = 60
0 
for T = 1, and 0 ~ 900 as T 0. From the well

known circle criterion the nonlinear function 1p(t) ~ ~~
- can be allowed in the

closed—loop without destroying its stability. This is consistent with Theorem

4.1.

_______________

- _ _____
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V. Conclusions

It has been recognized that relatively few optimal control problems lead

to stable linear feedback control laws, particularly for time-varying linear

systems. In this paper an unconventional optimal control problem has been

introduced whose modification leads to a stable control. Since the stabilizing

feedback gains are obtained by integrating a Riccati equation over a finite

time interval, its computation should be easy with modern computers. The

control law (4.5) employing (4.12) is one of the easiest ways to stabilize a

linear time invariant system like the one in [3], since the gain matrix can be

obtained by a single integration of a Riccati-type equation as indicated in

(4.12). The results indicate that a short receding horizon distance T should

be chosen when large nonlinearities exist in the feedback loop. Stabilization

with a prescribed degree of stability can be obtained exactly the same as in 12].

-_ — - —  ~~~~~~~~~~~~~~~~ —~~~~ ---. _ . _  ,
~~~~ _ ___  
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